Some Reactions of Pentacyanosulphitoferrate(II) with Oxidising Agents

By Alan D. James and Robin S. Murray,* Department of Chemistry, The University, Hull HU6 7RX

Oxidation of the species $[Fe^{II}(CN)_{5}(SO_{3})]^{5-}$ by one equivalent of the oxidising agents $[Ir^{IV}CI_{6}]^{2-}$ and $[Fe^{III}-$ (CN)6]3- leads rapidly to the formation of the complex [FeIII(CN)5(SO3)]4- which reacts with an excess of $[Ir^{IV}CI_6]^{2-}$ to form $[Fe^{III}(CN)_5(OH_2)]^{2-}$ and $[SO_4]^{2-}$. Further oxidation of $[Fe^{III}(CN)_5(SO_3)]^{4-}$ by Br₂ gives a red complex (λ_{max} . 490 nm). The observed first-order rate constants for the reactions of $[Fe^{III}(CN)_5(SO_3)]^{4-}$ with the different oxidants are the same, and are independent of the concentration of the oxidant.

It has been reported ¹ that the oxidation of $[Fe^{II}(CN)_{5}]$ $(SO_3)^{5-}$ by Br₂ in aqueous solution leads to the formation of a red sulphato-complex, and more recently Swinehart showed ² that the reaction of solutions of [Fe^{II}(CN)₅- (SO_3) ⁵⁻ with one equivalent of several oxidising agents gave the green complex $[Fe^{III}(CN)_5(SO_3)]^{4-}$, the visible spectrum of which is typical³ of complexes of the type $[Fe^{III}(CN)_5X]$, where X is a reducing agent. It was found that the iron(III) complex could be further oxidised by Cl₂, although the products of this reaction were not established.

We report the results of an investigation of the stoicheiometries and kinetics of the reactions of $[Fe^{II}(CN)_5(SO_3)]^{5-}$ with Br_2 and $[Ir^{IV}Cl_6]^{2-}$.

EXPERIMENTAL

All the chemicals were AnalaR grade with the exception of Na₂[Ir^{IV}Cl₆] (Johnson, Matthey and Co. Ltd.). Water was distilled twice. Buffers were prepared from Na₂[HPO₄] and Na[OH] (pH 6.8) and K[$O_2CC_6H_4CO_2H$] (pH 3.8), and constant ionic strength was maintained using NaCl. Samples of Na₅[Fe^{II}(CN)₅(SO₃)]·4H₂O were prepared by the method previously⁴ reported. The product was recrystallised twice from water-methanol {Found: C, 14.3; H, 1.7; Fe, 12.2; S, 7.2. Na₅[Fe^{II}(CN)₅(SO₃)]·4H₂O requires C, 13.3; H, 1.8; Fe, 12.3; S, 7.1%}.

The methods used for potentiometric and absorbance measurements have been reported ⁵ previously. Sephadex G 25 columns were used 5 to separate reaction products chromatographically. Estimates of the concentrations of solutions of [Fe^{III}(CN)₅(SCN)]³⁻ were made spectrophotometrically ⁵ at 590 nm (ε 2 680 dm³ mol⁻¹ cm⁻¹).

RESULTS AND DISCUSSION

Oxidation of $[Fe^{II}(CN)_5(SO_3)]^{5-}$ by $[Ir^{IV}Cl_6]^{2-}$.—The stoicheiometry of the rapid oxidation of [FeII(CN)5- (SO_3)]⁵⁻ by $[Ir^{IV}Cl_6]^{2-}$ to give $[Fe^{III}(CN)_5(SO_3)]^{4-}$ was determined spectrophotometrically at 660 nm, 10 °C, pH 7.5, and I = 1.00 mol dm⁻³. Maximum absorption occurred after the addition of 1.00 ± 0.05 equivalents of [Ir^{Iv}Cl₆]²⁻. Solutions of [Fe^{III}(CN)₅(SO₃)]⁴⁻ were sufficiently stable in the absence of excess of $[Ir^{IV}Cl_{6}]^{2-}$ to allow an investigation of its properties; the half-time for the decay in absorbance at 660 nm was ca. 20 min at 30 °C, pH 6.8, and $I = 1.0 \text{ mol dm}^{-3}$.

A potentiometric titration of a solution of $[Fe^{II}(CN)_{5}]$

 $(SO_3)^{5-}$ with $[Ir^{IV}Cl_6]^{2-}$ at 0 °C, pH 6.8, and I = 1.0mol dm⁻³ gave a reduction potential³ for the [Fe^{III}- $(CN)_{5}(SO_{3})]^{4-}-[Fe^{II}(CN)_{5}(SO_{3})]^{5-}$ couple of 0.44 V. A titration with [Ir^{IV}Cl₆]²⁻ at pH 4 gave a value of 0.57 V, and similar values of the reduction potentials at pH 6.8 and 4 were obtained with Br_2 as the oxidant. The increased value at the lower pH is probably due to protonation of the iron(II) complex; a pH titration of $[Fe^{II}(CN)_5(SO_3)]^{5-}$ with HCl at $I = 1.0 \text{ mol dm}^{-3}$ gave a pK for this species of 6.85 ± 0.05 . Both K_1 and K_2 have been shown ³ to be $\geq 10^3$ dm³ mol⁻¹ at 0 °C.

$$[Fe^{III}(CN)_{5}(OH_{2})]^{2-} + [SO_{3}]^{2-} \xleftarrow{K_{1}} \\ [Fe^{III}(CN)_{5}(SO_{3})]^{4-} + H_{2}O \quad (1)$$

$$[Fe^{II}(CN)_{5}(OH_{2})]^{3-} + [SO_{3}]^{2-} \xleftarrow{} \\ [Fe^{II}(CN)_{5}(SO_{3})]^{5-} + H_{2}O \quad (2)$$

 $\boldsymbol{\nu}$

When four or more equivalents of [Ir^{IV}Cl₆]²⁻ were added to solutions of $[Fe^{II}(CN)_5(SO_3)]^{5-}$, 2.9 \pm 0.15 equivalents of oxidising agent were consumed with simultaneous conversion of the original iron(II) complex into a species with a spectrum identical to [Fe^{III}(CN)₅- $(OH_2)^{2-}$. In accordance with this stoicheiometry we can write (3).

$$[Fe^{II}(CN)_{5}(SO_{3})]^{5-} + 3[Ir^{IV}Cl_{6}]^{2-} + 2H_{2}O \longrightarrow [Fe^{III}(CN)_{5}(OH_{2})]^{2-} + [SO_{4}]^{2-} + 2H^{+} + 3[Ir^{III}Cl_{6}]^{3-}$$
(3)

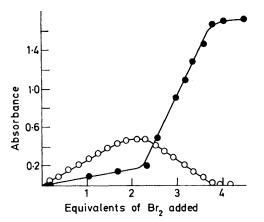
In titrations where [Ir^{IV}Cl₆]²⁻ was added in portions so that the concentration of this species was always much less than the concentration of the iron species, stoicheiometries of more than 2.5 but less than 3:1 were observed although complete conversion into [FeIII-(CN)₅(OH₂)]²⁻ still occurred. Stoicheiometries of less than 2:1 have been observed ⁶ for the oxidation of sulphite ion by [Ir^{IV}Cl₆]²⁻ when the latter was not in large excess, and have been attributed to the formation of $[S_2O_6]^{2-}$.

Reactions of [Fe^{II}(CN)₅(SO₃)]⁵⁻ with Br₂.--Spectrophotometric titrations of [Fe^{II}(CN)₅(SO₃)]⁵⁻ with Br₂ at 10 °C, pH 6.8, and $I = 1.0 \text{ mol dm}^{-3}$, where absorbance measurements were made at 660 and 490 nm, showed that the maximum concentration of [Fe^{III}(CN)₅- (SO_3)]⁴⁻ occurred after the addition of 2.1 ± 0.1 equivalents of Br₂. (Potentiometric titrations of the complex with Br₂ gave metastable end-points after the

¹ K. A. Hoffman, Annalen, 1900, 312, 27.

J. H. Swinehart, J. Inorg. Nuclear Chem., 1967, 27, 2313. A. D. James and R. S. Murray, J.C.S. Dalton, 1975, 1530.

⁴ 'Gmelins Handbuch der organischen Chemie,' 1932, vol. **B59**, p. 903.


⁵ A. D. James and R. S. Murray, J.C.S. Dalton, 1974, 1273.

⁶ A. Brown and W. C. E. Higginson, Chem. Comm., 1967, 725; J.C.S. Dalton, 1972, 166.

addition of ca. 2 equivalents of Br_{2} .) Further addition of Br₂ led to an increase in absorbance at 490 nm with a corresponding decrease at 660 nm and the solutions became red (Figure). The absorbance at 490 nm reached a maximum after the addition of a total of 4.3 ± 0.3 equivalents of Br₂ to the [Fe^{II}(CN)₅(SO₃)]⁵⁻. The apparent absorption coefficient of the red complex at 490 nm was calculated to be 510 \pm 50 dm³ mol⁻¹ cm⁻¹ assuming that complete conversion of the original $[Fe^{II}(CN)_5(SO_3)]^{5-}$ into this species had occurred. When a solution of $[Fe^{III}(CN)_5(SO_3)]^{4-}$, prepared by oxidation of [Fe^{II}(CN)₅(SO₃)]⁵⁻ by excess of [Fe^{III}-(CN)₆]³⁻, was oxidised by Br₂ the absorption coefficient at 490 nm was found to be 632 dm³ mol⁻¹ cm⁻¹, indicating that there was only $80 \pm 10\%$ conversion into the red species in the titrations of [Fe^{II}(CN)₅(SO₃)]⁴⁻ with Br₂.

The reaction of the red complex with $[SCN]^-$ (0.1 mol dm⁻³) gave 1.04 \pm 0.05 mol of [Fe^{III}(CN)₅(SCN)]³⁻ per mol of iron complex present indicating that the iron was present as a pentacyano-species in the red complex. Its visible and infrared spectra are typical of pentacyanoiron(III) complexes, and in particular³ [Fe^{III}Br(CN)₅]³⁻ which also absorbs strongly at 490 nm. However, this latter species has ε 902 dm³ mol⁻¹ cm⁻¹ at 490 nm compared with the above value for the red complex.

A solution of the red complex could be reduced with ascorbic acid, and complete reduction to [FeII(CN)5- (OH_2)]³⁻ (which was identified by its absorption maximum⁵ at 440 nm, ε 700 dm³ mol⁻¹ cm⁻¹) required

Typical spectrophotometric titration of $[\text{Fe}^{II}(\text{CN})_{5}(\text{SO}_{3})]^{5-}$ (1.0 × 10⁻³ mol dm⁻³) against Br₂ at I = 1.0 mol dm⁻³ (NaCl), pH 7.5, and 10 °C using a 4-cm optical cell at 490 (\bigcirc) and 660 nm (O)

 2.18 ± 0.18 equivalents of reductant per mol of the complex. The red colour was completely removed after the addition of 1.02 ± 0.04 mol of ascorbic acid. This one-equivalent reduction was partly reversible when reoxidation with Br₂ was carried out within several minutes at 0 °C. However, when the reduced solution

⁷ R. S. Murray, J.C.S. Dalton, 1974, 2381.
⁸ A. I. Vogel, 'A Textbook of Quantitative Inorganic Analysis,' 3rd edn., Longmans, 1962, p. 464.

was allowed to stand for a few minutes at room temperature regeneration of the red complex was not possible, and the ultraviolet and visible spectrum of the solution became similar to that ⁵ of $[Fe^{III}(CN)_5(OH_2)]^{2-}$. Other experiments showed that the reaction of the latter species with Br₂ did not produce a red complex. The results are consistent with the following Scheme.

SCHEME $(i) + e^{-}$; (ii) hydrolysis; (iii) rapid hydrolysis

Attempts to precipitate salts of the red complex were unsuccessful due to its instability in the presence of many cations; for example, addition of $Ag[NO_3]$ and BaCl₂ to solutions of the complex gave precipitates which were not red. Evaporation to dryness of a solution of the complex which had been passed down a chromatographic column to separate the complex from the excess of Br₂ and the other reaction products gave a hygroscopic purple solid which did not give a red solution on redissolution in water. Analysis of this purple solid gave: C, 11.15; H, 0.45; Br, 20.55; Fe, 12.15; N, 12.6; S, 8.0%, which is consistent with the stoicheiometric ratio Fe: C: N: S: Br of 1.00: 4.28: 4.14: 1.15: 1.18. We note that one cyanide ligand per iron complex is lost on dehydrating the red complex.

We suggest that the red complex might be [Fe^{III}(CN)₄- $(CNBr)(SO_4)$ ⁴⁻ where the $[CNBr]^-$ ligand is formed by the addition of a bromine atom to a cyanide ligand in a similar way ⁷ to the addition of a $[SO_3]^-$ radical ion to a cyanide ligand in the $[Fe(CN)_6]^{3-}-[SO_3]^{2-}$ reaction. A gravimetric determination ⁸ of sulphate as $Sr[SO_4]$ of a solution of the red complex showed that this contained 1.06 ± 0.04 mol of sulphate per mol of $[Fe^{II}(CN)_5(SO_3)]^{5-1}$ present initially. The formation of the proposed complex from $[Fe^{II}(CN)_5(SO_3)]^{5-}$ would require four equivalents of Br₂, and it would require two equivalents of ascorbic acid to give a species which hydrolysed to [Fe^{II}(CN)₅(OH₉)]³⁻.

Evaporation of a solution of $[Fe^{III}(CN)_4(CNBr)(SO_4)]^{4-1}$ might lead to a rearrangement of the CNBr ligand with the expulsion of one mol of cyanogen per two mol of iron(III) complex which would be lost in the evaporation process.

Kinetic Investigation.-The reactions of Br2 and $[Ir^{IV}Cl_6]^{2-}$, which have reduction potentials ⁹ of 1.09 and 1.02 V respectively, with $[Fe^{II}(CN)_5(SO_3)]^{5-}$ rapidly $(t_1 < 1 \text{ s at } 0 \text{ °C})$ gave $[\text{Fe}^{\text{III}}(\text{CN})_5(\text{SO}_3)]^{4-}$, and the

⁹ 'Handbook of Chemistry and Physics,' 51st edn., The Chemical Rubber Co., 1970-1971, p. D-112.

subsequent oxidation of the latter species was followed spectrophotometrically at 660 nm. Plots of log $(A_t - A_{\infty})$ against time were linear for at least 85% completion of reaction and the observed first-order rate constants, $k_{\rm obs.}$ {where $-d[{\rm Fe^{III}(CN)_5(SO_3)^{4-}]/dt}=k_{\rm obs.}[{\rm Fe(CN)_{5^-}(SO_3)^{4-}}]$ are given in the Table. Values of $k_{\rm obs.}$ were

Kinetic data for the oxidation of $[Fe^{III}(CN)_5(SO_3)]^{4-}$ by Br₂ and $[Ir^{IV}Cl_6]^{2-}$ at 11.9 °C and $I = 1.0 \text{ mol dm}^{-3 a}$

•	02		
	$10^{2}[Br_{2}]$	10 ² [Ir ^{IV} Cl ₆ ²⁻]	$10^{3}k_{obs}$.
pН	mol dm ⁻³	mol dm-3	s-1
3.8 "	2.38		8.7 °
	1.30		9.0 °
	0.24		8.3 °
6.8 ^d	0.47		6.6 °
	1.23		7.2 °
	0.5		6.8 °
	2.37		6.6 °
	2.37		6.8 °
	1.28		6.8 °
	0.66		7.1
	0.35		7.1 •
	0.24		6.6 °
3.8		3.63	10.2 •
		1.82	8.5 *
		0.68	8.3 *
		1.36	7.3 °
		0.30	7.7 •

"Maintained using NaCl. "Phthalate buffer. "Obtained from plots of $\ln(A_{\infty} - A_t)$ against time at 490 nm. ⁴ Phosphate buffer. ⁶ Obtained from plots of $\ln(A_t - A_{\infty})$ against time at 650 nm.

independent of the nature and the concentration of the oxidising agent under the same conditions of pH, temperature, and ionic strength. When Br_2 was the oxidant, the rate of loss of $[Fe^{III}(CN)_5(SO_3)]^{4-}$ was found to be identical to the rate of formation of the red complex by making measurements at 490 nm. The value of $k_{obs.}$ at 11.9 °C, pH 6.8, and $I = 1.0 \text{ mol dm}^{-3}$ was 6.8 \pm 0.2 s⁻¹, and was at least a factor of 10 greater than the reported first-order rate constants for the hydrolysis reactions ¹⁰ of [Fe^{II}(CN)₅(SO₃)]⁵⁻ and [Fe^{III}- $(CN)_5(SO_3)$]⁴⁻. Thus our investigation of the oxidation reactions of [Fe^{III}(CN)₅(SO₃)]⁴⁻ were not complicated by the hydrolysis reaction of this complex or by catalysis⁵ by [Fe^{II}(CN)₅(SO₃)]⁵⁻.

Oxidation of [Fe^{III}(CN)₅(SO₃)]⁴⁻ by both [Ir^{IV}Cl₆]²⁻ and Br₂ in excess results in the oxidation of the sulphitoligand to sulphate. Reactions (4)---(6) are consistent

- J. Legros, J. Chim. phys., 1964, 61, 911, 923.
 H. E. Toma and J. M. Malin, Inorg. Chem., 1973, 12, 2084.

with the kinetic data providing $k_5[Br_2] \gg k_4 \ll k_6$ -[Ir^{IV}Cl₆²⁻] and assuming a first-order dependence on

$$Fe^{III}(CN)_5(SO_3)]^{4-1} \xrightarrow[k_{-4}]{k_{-4}}$$

Intermediate; rate determining (4)

E

Intermediate + 1.5
$$\operatorname{Br}_2 \xrightarrow{\kappa_5} \operatorname{red complex}$$
 (5)

Intermediate +
$$2[\operatorname{IrCl}_6]^{2-} \xrightarrow{\kappa_*} [\operatorname{Fe}^{III}(\operatorname{CN})_5(\operatorname{OH}_2)]^{2-} + [\operatorname{SO}_4]^{2-}$$
 (6)

 Br_2 and $[Ir^{IV}Cl_6]^{2-}$. It is proposed that (4) is an intramolecular isomerism as in (7). It has been shown that

$$[Fe^{III}(CN)_{5}(SO_{3})]^{4-} \xrightarrow[k_{-4}]{} [Fe(CN)_{5}(OSO_{2})]^{4-}$$
(7)

pentacyanoferrate(II and III) centres are soft or class (b) centres 3 and thus the S-bonded isomer should be the more stable form. Also the position of λ_{max} of the ligand-field band in $[Fe^{II}(CN)_5(SO_3)]^{5-}$ is very similar to that for $[Fe^{II}(CN)_{5}(dmso)]^{3-}$ (dmso = dimethyl sulphoxide) at 352 nm, and the latter species is known¹¹ to be S-bonded. In connection with the postulated isomerism reaction, we note 12 that O-bonded organic sulphite esters are oxidised much more readily than the corresponding S-bonded isomer.

A mechanism for the oxidation of the O-bonded isomer [Fe^{III}(CN)₅(OSO₂)]⁴⁻ by [Ir^{IV}Cl₆]²⁻ is suggested in equations (8) and (9), followed by (10) or (11).

$$[\operatorname{Fe^{III}(CN)}_{5}(\operatorname{OS^{IV}O}_{2})]^{4-} + [\operatorname{Ir^{IV}Cl}_{6}]^{2-} \longrightarrow \\ [\operatorname{Fe^{III}(CN)}_{5}(\operatorname{OS^{V}O}_{2})]^{3-} + [\operatorname{Ir^{III}Cl}_{6}]^{3-} (8)$$

$$\frac{\text{Fe}^{\text{III}}(\text{CN})_{5}(\text{OS}^{\text{V}}\text{O}_{2})]^{3^{-}} + \text{H}_{2}\text{O} \longrightarrow}{[\text{Fe}^{\text{III}}(\text{CN})_{5}(\text{OH}_{2})]^{2^{-}} + [\text{S}^{\text{V}}\text{O}_{3}]^{-}}$$
(9)

$$[S^{V}O_{3}]^{--} + [Ir^{IV}Cl_{6}]^{2-} + H_{2}O \longrightarrow [SO_{4}]^{2-} + 2H^{+} + [Ir^{III}Cl_{6}]^{3-} (10)$$

$$2[S^{v}O_{3}]^{-} \longrightarrow [S_{2}O_{6}]^{2-}$$
(11)

Equation (11) becomes important at low concentrations of $[Ir^{IV}Cl_6]^{2-}$ when less than the stoicheometric amount of $[Ir^{IV}Cl_{e}]^{2-}$ was consumed according to equation (3).

[5/1913 Received, 2nd October, 1975]

¹² F. C. Whitmore in 'Organic Chemistry,' Chapman and Hall, 1937, p. 167.